zurück

Beherrschung von Zerspanprozessen durch transferierbare künstliche Intelligenz – Grundlage für Prozessverbesserungen und neue Geschäftsmodelle (TransKI)

0 Projekt-Favoriten

Stellen Sie sich Ihre individuelle Projektübersicht zusammen.

Favoriten anzeigen

Schlagwort: Künstliche Intelligenz (KI), Produktionsanlagen

Fördermaßnahme: Lernende Produktionstechnik - Einsatz künstlicher Intelligenz (KI) in der Produktion (ProLern)

Laufzeit: 01.07.2021 - 31.12.2024
KI-gestütztes Assistenzsystem unterstützt Fachkräfte direkt an der Maschine KI-gestütztes Assistenzsystem unterstützt Fachkräfte direkt an der Maschine

Forschungsziel: Bei Zerspanprozessen wird die Bauteilqualität maßgeblich vom Verschleiß der eingesetzten Werkzeuge beeinflusst. Die Wirkzusammenhänge zwischen Verschleiß und Bauteileigenschaften sind jedoch komplex und lassen sich mit herkömmlichen Methoden nur bedingt analysieren. Deswegen nutzt die Forschung in jüngster Zeit vermehrt Modelle, die auf Algorithmen basieren, welche ein bestimmtes Verhalten anhand von Trainingsdaten erzeugen. Mit diesen Maschinellen Lernverfahren (ML) lassen sich die beschriebenen Wirkzusammenhänge bei der Zerspanung vorhersagen – allerdings nur für die betrachteten Anwendungsfälle unter Laborbedingungen. Infolgedessen ist das Übertragen auf neue Fälle nicht ohne weiteres möglich, was eine industrielle Nutzung derartiger Modelle bislang ausschließt. Ziel des Forschungsprojekts TransKI ist es, ML-Modelle zu trainieren und diese mithilfe von Transfer-Learning-Methoden auf neue Anwendungsfälle zu übertragen. Dieser erstmalige Einsatz von Transfer-Learning in kundenspezifischen, praxisrelevanten Zerspanprozessen ist essentiell, um zukunftweisende Prozessunterstützungen in Form eines Assistenzsystems in die Produktionsumgebung einzubinden und entsprechende, Transfer-Learning-basierte Geschäftsmodelle entwickeln zu können. Weiterhin lassen sich Produktivität sowie Werkstückqualität in der Fertigung steigern.

Ansprechperson Projektkoordination

Mathias Schmidt
+49 6788 9798-12
m.schmidt@mueller-sien.de

Ansprechperson bei PTKA

Dipl.-Ing. Stefan Kuntz
+49 721 608-24628
stefan.kuntz@kit.edu

Detaillierte Projektbeschreibung

Problemstellung
Die Produktionskosten eines zerspanten Bauteils werden maßgeblich durch das Zeitspanvolumen und den Werkzeugverschleiß bestimmt. Zunehmender Werkzeugverschleiß wirkt sich signifikant auf die Werkstückqualität aus. Hierbei kann es neben Abweichungen von den geforderten geometrischen Toleranzen zu einer verstärkten Gratbildung, zu erhöhten Rauheiten und zu einer Beeinflussung der metallurgischen und mechanischen Eigenschaften der Werkstückrandzone kommen. Um dem entgegenzuwirken, werden Werkzeuge in der industriellen Praxis häufig vorsorglich deutlich zu früh ausgetauscht. Neben dem verschwendeten Standzeitpotential resultieren hieraus längere Rüstzeiten, sowie höhere Werkzeugkosten. Die Verwendung eines KI-gestützten, intelligenten Werkzeugmanagements bietet, in Kombination mit einem tieferen Verständnis der Wirkzusammenhänge innerhalb des Zerspanprozesses, das Potential die ansonsten verschwendete Standzeit bestmöglich auszunutzen. Durch diese Möglichkeit lässt sich eine ressourceneffiziente, sowie nachhaltige Verbesserung der Produktivität realisieren, welche erheblich zur Steigerung der Wettbewerbsfähigkeit produzierender Unternehmen beitragen kann.

Projektziele
Ziel des Forschungsprojekts TransKI ist es, auf Maschinellen Lernverfahren (ML) basierende Modelle zu trainieren und diese mithilfe von Transfer-Learning-Methoden auf neue Anwendungsfälle zu übertragen. Dieser erstmalige Einsatz von Transfer-Learning in kundenspezifischen, praxisrelevanten Zerspanprozessen ist essentiell, um zukunftweisende Prozessunterstützungen in Form eines Assistenzsystems in die Produktionsumgebung einzubinden und entsprechende, Transfer-Learning-basierte Geschäftsmodelle entwickeln zu können.

Vorgehensweise
In der ersten Phase des Forschungsprojekts werden industrielle Anwendungsfälle definiert, Zerspanversuche durchgeführt und ausgewertet. Mit den aufbereiteten Daten dieser Versuche lassen sich grundlegende ML-Modelle entwickeln. In der zweiten Phase geht es darum, die Modelle für neue Anwendungsfälle zu befähigen. Dabei wird die Versuchsumgebung, d. h. der Prozess, die Maschine und Sensorik sowie der Werkstoff, schrittweise verändert, verschleißabhängige Gemeinsamkeiten identifiziert und a-priori Expertenwissen in die Untersuchungen einbezogen. Um die optimierten ML-Modelle industriell nutzbar zu machen, werden in der dritten Projektphase ein Assistenzsystem zur Prozessvorsteuerung sowie Transfer-Learning-basierte Geschäftsmodelle entwickelt.

Ergebnisse und Anwendungspotenzial
Die gewonnenen Erkenntnisse werden in mehreren unterschiedlichen Pilotanwendungen für das Bohren und Fräsen validiert. Des Weiteren adressiert das Vorhaben nicht nur die spezifische Problemstellung aus der Werkzeugindustrie, sondern eröffnet auch mittels Transfer-Learning neue Wege, um bislang unerschlossene Wertschöpfungspotenziale zu heben, beispielsweise bei Investitionsgüterherstellern oder produzierenden Unternehmen anderer Branchen. Durch Aktivitäten der am Vorhaben mitwirkenden Partner in verschiedenen Vereinen, Arbeitskreisen und Gesellschaften werden Projektergebnisse auch branchenübergreifend in der industriellen Praxis verbreitet. Hinsichtlich Standardisierung und Normung sind zwei Partner in den themenrelevanten VDI-Ausschüssen beteiligt, deren Arbeit in die Erstellung von VDI-Richtlinien einfließen.

Projektpartner
  • botek Präzisionsbohrtechnik GmbH
  • Empolis Information Management GmbH
  • Hartmetall-Werkzeugfabrik Paul Horn GmbH
  • K.-H. Müller Präzisionswerkzeuge GmbH
  • Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
  • Robert Bosch GmbH
  • Universität Stuttgart
Publikationen
Titel: Industrie 4.0 - Transferierbare KI in der Zerspanung (TransKI)
Akronym: TransKI
Autor: Schmidt, M.
Herausgeber: IndustryArena GmbH
Veröffentlicht im Jahr: 2023
Am Projekt „Beherrschung von Zerspanprozessen durch transferierbare künstliche Intelligenz – Grundlage für Prozessverbesserungen und neue Geschäftsmodelle (TransKI)“ sind insgesamt sieben Partner aus Industrie und Forschung beteiligt. Das vom Bundesministerium für Bildung und Forschung geförderte Forschungsprojekt, das die Möglichkeiten des Transfer Learnings in der Zerspanung ausloten und industriell nutzbar machen soll, läuft seit 2021. Mithilfe von Transfer Learning soll Wissen von bereits gelernten Aufgaben genutzt werden, um ML-Modelle schneller für neue, aber verwandte Aufgaben trainieren zu können.
Titel: Künstliche Intelligenz in der Zerspanung - Forschungsprojekt zur Produktion von morgen (TransKI)
Akronym: TransKI
Autor: Schmidt, M.
Verlag: Carl Hanser Verlag Carl Hanser Verlag
Veröffentlicht im Jahr: 2022
Wie bei allen industriellen Anwendungen herrscht auch bei der Zerspanung stetig wachsender Kostendruck. Maßgeblich für die Produktionskosten eines zerspanten Bauteils sind der Werkzeugverschleiß und das Zeitspanvolumen. Je effizienter Werkzeuge eingesetzt werden, umso geringer werden die Kosten. Maschinelles Lernen (ML) kann dabei als Entscheidungsunterstützung für den Werkzeugwechsel einen wertvollen Beitrag leisten. Allerdings gibt es hier keine Patentlösungen, zu unterschiedlich sind die einzelnen Prozesse von Anwendungsfall zu Anwendungsfall. Eine Lösung kann das sogenannte Transfer Learning bieten: Hierbei wird Wissen von verwandten, bereits gelernten Aufgaben genutzt, um ML-Modelle schneller für neue, aber verwandte Aufgaben trainieren zu können. Seit Juni 2021 läuft ein durch das Bundesministerium für Bildung und Forschung (BMBF) gefördertes Forschungsprojekt, das die Möglichkeiten des Transfer Learnings in der Zerspanung ausloten und industriell nutzbar machen soll.
Titel: TransKI_Projektatlas „Künstliche Intelligenz in der Produktion"
Akronym: TransKI
Autor: Forschungsprojekte der Bekanntmachungen "ProLern" und "ProKI-Netz"
Verlag: VDI Verlag Düsseldorf VDI Verlag Düsseldorf
Veröffentlicht im Jahr: 2024
Der Projektatlas „Künstliche Intelligenz in der Produktion“ - ein wichtiges Werk für alle, die sich mit den Chancen und Herausforderungen von KI für die Produktion der Zukunft auseinandersetzen möchten. Neben aktuellen Forschungsergebnissen wird ein umfassender Leitfaden zur Einführung von KI in Unternehmen geboten, der zentrale Themen wie den strategischen und wirtschaftlichen Einsatz und die Förderung der Akzeptanz bei den Mitarbeitenden fokussiert. Darauf folgen praxisnahe Best-Practices, die Einblicke in die notwendige Digitalisierung, das Datenmanagement, spezifische KI-Methoden und auch hier in das Zusammenspiel zwischen Mensch und KI geben. Der Projektatlas wurde von den Projekten der beiden Bekanntmachungen „Lernende Produktionstechnik – Einsatz Künstlicher Intelligenz (KI) in der Produktion (ProLern)“ und „Demonstrations- und Transfernetzwerk KI in der Produktion (ProKI-Netz)“ veröffentlicht.

Ihre Favoriten

In der folgenden Liste sehen Sie Ihre ausgewählten Projekt-Favoriten.